13. Expected Value#
Note
This is some text
Theorem 13.1 (Linearity of Expected Value)
Let \(X\) and \(Y\) be two independent random variables, then:
\[
\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]
\]
Proof. By the definition of expected value:
\[\begin{split}
\mathbb{E}[X + Y] & = \sum_{x, y \in X, Y} p(x, y) (x + y) \\
& = \sum_{x \in X} \sum_{y \in Y} p(x) p(y) (x + y) \\
& = \sum_{x \in X} \sum_{y \in Y} p(x) p(y) x + \sum_{x \in X} \sum_{y \in Y} p(x) p(y) y \\
& = \sum_{x \in X} p(x) x \sum_{y \in Y} p(y) + \sum_{y \in Y} p(y) y \sum_{x \in X} p(x) \\
& = \sum_{x \in X} p(x) x + \sum_{y \in Y} p(y) y \\
& = \mathbb{E}[X] + \mathbb{E}[Y]
\end{split}\]