# Expected Value ```{note} This is some text ``` ```{prf:theorem} Linearity of Expected Value Let $X$ and $Y$ be two independent random variables, then: $$ \mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y] $$ ``` ```{prf:proof} By the definition of expected value: $$ \mathbb{E}[X + Y] & = \sum_{x, y \in X, Y} p(x, y) (x + y) \\ & = \sum_{x \in X} \sum_{y \in Y} p(x) p(y) (x + y) \\ & = \sum_{x \in X} \sum_{y \in Y} p(x) p(y) x + \sum_{x \in X} \sum_{y \in Y} p(x) p(y) y \\ & = \sum_{x \in X} p(x) x \sum_{y \in Y} p(y) + \sum_{y \in Y} p(y) y \sum_{x \in X} p(x) \\ & = \sum_{x \in X} p(x) x + \sum_{y \in Y} p(y) y \\ & = \mathbb{E}[X] + \mathbb{E}[Y] $$ ```