5. Matrix Operations#

A short summary of the properties of some matrix operations.

5.1. Transpose#

Suppose \(\mathbf{A}\) and \(\mathbf{B}\) are matrices and \(\mathbf{x}\) is a vector.

  • \((\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T\)

  • \((\mathbf{A}^T)^T = \mathbf{A}\)

  • \((\mathbf{A x})^T = \mathbf{x}^T \mathbf{A}^T\)

  • \((\mathbf{x}_1^T \mathbf{A} \mathbf{x}_2)^T\) = \(\mathbf{x}_1^T \mathbf{A}^T \mathbf{x}_2\)

5.2. Transpose Proofs#

  • \((\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T\)

Let \(\mathbf{A}_i\) and \(\mathbf{B}_i\) be the \(i\)-th column of \(\mathbf{A}\) and \(\mathbf{B}\) respectively.

\[\begin{split}\newcommand{\vertbar}{\rule[-1ex]{1pt}{2.5ex}} \newcommand{\horzbar}{\rule[.5ex]{2.5ex}{1pt}} (\mathbf{A} + \mathbf{B})^T = & \left( \begin{bmatrix} \vertbar & \vertbar & \dots & \vertbar \\ \mathbf{A}_1 & \mathbf{A}_2 & \dots & \mathbf{A}_n \\ \vertbar & \vertbar & \dots & \vertbar \\ \end{bmatrix} + \begin{bmatrix} \vertbar & \vertbar &\dots & \vertbar \\ \mathbf{B}_1 & \mathbf{B}_2 & \dots & \mathbf{B}_n \\ \vertbar & \vertbar & \dots & \vertbar \\ \end{bmatrix} \right)^T \\ = & \begin{bmatrix} \vertbar & \vertbar & \dots & \vertbar \\ \mathbf{A}_1 + \mathbf{B}_1 & \mathbf{A}_2 + \mathbf{B}_2 & \dots & \mathbf{A}_n + \mathbf{B}_n \\ \vertbar & \vertbar & \dots & \vertbar \\ \end{bmatrix}^T \\ = & \begin{bmatrix} \horzbar & \mathbf{A}_1 + \mathbf{B}_1 & \horzbar \\ \horzbar & \mathbf{A}_2 + \mathbf{B}_2 & \horzbar \\ \vdots & \vdots & \vdots \\ \horzbar & \mathbf{A}_n + \mathbf{B}_n & \horzbar \\ \end{bmatrix}^T.\end{split}\]

And,

\[\begin{split}\mathbf{A}^T + \mathbf{B}^T = & \begin{bmatrix} \horzbar & \mathbf{A}_1 & \horzbar \\ \horzbar & \mathbf{A}_2 & \horzbar \\ \vdots & \vdots & \vdots \\ \horzbar & \mathbf{A}_n & \horzbar \\ \end{bmatrix}^T. + \begin{bmatrix} \horzbar & \mathbf{B}_1 & \horzbar \\ \horzbar & \mathbf{B}_2 & \horzbar \\ \vdots & \vdots & \vdots \\ \horzbar & \mathbf{B}_n & \horzbar \\ \end{bmatrix}^T. = \begin{bmatrix} \horzbar & \mathbf{A}_1 + \mathbf{B}_1 & \horzbar \\ \horzbar & \mathbf{A}_2 + \mathbf{B}_2 & \horzbar \\ \vdots & \vdots & \vdots \\ \horzbar & \mathbf{A}_n + \mathbf{B}_n & \horzbar \\ \end{bmatrix}^T.\end{split}\]

End of proof.

  • \((\mathbf{A}^T)^T = \mathbf{A}\)

\[\begin{split}(A^T)^T = \begin{bmatrix} \horzbar & \mathbf{A}_1 & \horzbar \\ \horzbar & \mathbf{A}_2 & \horzbar \\ \vdots & \vdots & \vdots \\ \horzbar & \mathbf{A}_n & \horzbar \\ \end{bmatrix}^T = \begin{bmatrix} \vertbar & \vertbar & \dots & \vertbar \\ \mathbf{A}_1 & \mathbf{A}_2 & \dots & \mathbf{A}_n \\ \vertbar & \vertbar & \dots & \vertbar \\ \end{bmatrix} = \mathbf{A}\end{split}\]

End of proof.

  • \((\mathbf{A} \mathbf{x})^T = \mathbf{x}^T \mathbf{A}^T\)

Let \(\mathbf{A}_i\) be the \(i\)-th row.

\[\begin{split}(\mathbf{A} \mathbf{x})^T = \begin{bmatrix} \mathbf{A}_1 \mathbf{x} \\ \mathbf{A}_2 \mathbf{x} \\ \vdots \\ \mathbf{A}_n \mathbf{x} \\ \end{bmatrix}^T = \begin{bmatrix} \mathbf{A}_1 \mathbf{x} & \mathbf{A}_2 \mathbf{x} & \dots & \mathbf{A}_n \mathbf{x} \end{bmatrix}\end{split}\]

And,

\[\begin{split}\mathbf{x}^T \mathbf{A}^T = \mathbf{x}^T \begin{bmatrix} \vertbar & \vertbar & \dots & \vertbar \\ \mathbf{A}_1 & \mathbf{A}_2 & \dots & \mathbf{A}_n \\ \vertbar & \vertbar & \dots & \vertbar \\ \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1 \mathbf{x} & \mathbf{A}_2 \mathbf{x} & \dots & \mathbf{A}_n \mathbf{x} \end{bmatrix}\end{split}\]

End of proof.

  • \(\mathbf{x}_1^T \mathbf{A} \mathbf{x}_2\) = \(\mathbf{x}_2^T \mathbf{A} \mathbf{x}_1\)

Let \(\mathbf{A}_i\) be the \(i\)-th row of \(\mathbf{A}\).

\[\begin{split}\begin{bmatrix} \horzbar & \mathbf{x}_1 & \horzbar \end{bmatrix} \begin{bmatrix} \horzbar & \mathbf{A}_1 & \horzbar \\ \horzbar & \mathbf{A}_2 & \horzbar \\ \vdots & \vdots & \vdots \\ \horzbar & \mathbf{A}_n & \horzbar \\ \end{bmatrix} \begin{bmatrix} \vertbar \\ \mathbf{x}_2 \\ \vertbar \end{bmatrix} & = \begin{bmatrix} \horzbar & \mathbf{x}_1 & \horzbar \end{bmatrix} \begin{bmatrix} \mathbf{A}_1 \mathbf{x_2} \\ \mathbf{A}_2 \mathbf{x_2} \\ \vdots \\ \mathbf{A}_n \mathbf{x_2} \\ \end{bmatrix} \\ & = \begin{bmatrix} \mathbf{A}_1 \mathbf{x_2} & \mathbf{A}_2 \mathbf{x_2} & \dots & \mathbf{A}_n \mathbf{x_2} & \end{bmatrix} \begin{bmatrix} \vertbar \\ \mathbf{x}_1 \\ \vertbar \end{bmatrix} \\ & = \begin{bmatrix} \horzbar & \mathbf{x}_2 & \horzbar \end{bmatrix} \begin{bmatrix} \vertbar & \vertbar & \dots & \vertbar \\ \mathbf{A}_1 & \mathbf{A}_2 & \dots & \mathbf{A}_n \\ \vertbar & \vertbar & \dots & \vertbar \\ \end{bmatrix} \begin{bmatrix} \vertbar \\ \mathbf{x}_1 \\ \vertbar \end{bmatrix} \\ & = \mathbf{x}_2^T \mathbf{A} \mathbf{x}_1\end{split}\]